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ABSTRACT: The Sparsely Distributed Memory (SDM) model (Kanerva, 

1984) is compared to Hopfield-type neural-network models. A mathematical 

framework for comparing the two is developed, and the capacity of each model 

is investigated. The capacity of the SDM can be increased independently of the 

dimension of the stored vectors, whereas the Hopfield capacity is limited to a 

fraction of this dimension. However, the total number of stored bits per ma- 

trix element is the same in the two models, as well as for extended models with 

higher order interactions. The models are also compared in their ability to 

store sequences of patterns. The SDM is extended to include time delays so 

that contextual information can be used to recover sequences. Finally, it is 

shown how a generalization of the SDM allows storage of correlated input pat- 

tern vectors. 
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Introduction 

Hopfield (1982) presented an autoassociative memory model based on a 

network of highly interconnected two-state threshold units (“neurons”). He 

showed how to store randomly chosen patterns of Os and 1s in the network by 

using a Hebbian (Hebb, 1949) learning algorithm. He was also able to show 

that for symmetric connections between the units, the dynamics of this network 

is governed by an energy function that is equivalent to the energy function of 

an Ising model spin-glass (Kirkpatrick & Sherrington, 1979). The two-state 

units used in the Hopfield model date back to McCulloch and Pitts (1943), and 

models of this type are currently known as “neural-network models” (or “con- 

nectionist models” or “artificial neural systems”). Similar models have been 

investigated by Amari (1971), Anderson et. al. (1977), Kohonen (1980), Little 

and Shaw (1978), and Nakano (1972). 

The Hopfield neural-network model is attractive for its simplicity and its 

ability to function as a massively parallel, autoassociative memory. Neverthe- 

less, a number of limitations of the Hopfield model have been pointed out. 

First of all, the storage capacity (the number of memory patterns that can be 

stored in the network) is limited to a fraction of the number of processing ele- 

ments (McEliece et al., 1986). Second, the standard Hopfield model is unsuc- 

cessful at storing temporal sequences of memory patterns (Hopfield, 1982). 

Third, as a model of the brain, it is unrealistic due to the requirement of sym- 

metric connections between the units. Finally, it is quite limited in its ability to 

store sets of correlated patterns. 

Kanerva (1984) introduced a memory model known as Sparsely Distri- 

buted Memory (SDM) (or Sparse, Distributed Memory), that is not restricted 

by the limitations listed above. Although independently discovered, Kanerva’s 

model is basically equivalent in mathematical form to a model of the cerebellar 
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cortex introduced by Marr (1969) and to the Cerebellar Model Arithmetic 

Computer (CMAC) introduced by Albus (1971). I will follow Kanerva’s 

description and denote the model SDM. The SDM model uses nonsymmetric 

matrices in a two-stage system to store patterns, and it can function as an 

autoassociative memory, a heteroassociative memory, or a sequential-access 

memory. 1 

In the following I develop a mathematical framework for comparing the 

SDM and the Hopfield model. I then analyze the storage capacity of both 

models and their ability to store sequences of patterns. I also show how the 

Hopfield model can be thought of as a special case of a mathematical extension 

of the SDM. I then compare the SDM to a few other models that have been 

proposed to alleviate some of the limitations of the Hopfield model. Finally, I 

show how the SDM can be used to store correlated sets of patterns. 

Hopfield Model 

In this section, I briefly review the Hopfield model in its discrete form 

(Hopfield, 1982), and introduce the mathematical formalism that will be used 

in discussing the SDM. The processing elements (units) in the Hopfield model 

are simple two-state threshold devices: The state of the i fh unit, ui, is either 

+ 1 (firing at the maximum rate) or -1 (not firing). Consider a set of n such 

units with the connection strength from the jrh unit to the ifh given by Tij. 

The net input to the ia unit from all of, hi,  the other units is given by 

N 

j =  1 
hi = C T i j ~ j .  (1) 

An autoassociative memory is one that associates a pattern with itself and is 
synonymous with a content-addressable memory, whereas a heteroassociative memory 
is one that associates one pattern with another, and a sequential-access memory yields a 
temporal sequence of patterns. 
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The state of each unit is updated asynchronously (at random) according to the 

rule 

ui +g(hi) 9 

where for the discrete model g is a simple threshold function 

+ 1  if x > o  1 -1 if x < O  
g ( x )  = unchanged if x = O  . (3) 

In this formulation, the dynamics is not deterministic because each unit is 

updated at random times. 

The state of all of the units at a given time can be thought of as a firing 

pattern of the units. This pattern is just an n dimensional vector u whose com- 

ponents are f 1. Each different pattern can be represented as a point in the n 

dimensional state space of the units, and there are 2” distinct points in this 

space. The goal here is to store a few “memory” patterns in this space as stable 

fixed points of the dynamical system. This allows the system to function as an 

accretive autoassociative memory: When the system is given as input a pattern 

that is close to one of the stored patterns it will relax to that stored pattern (a 

fixed point). 

Suppose we are given M patterns (strings of length n of f 1s) that we 

wish to store in this system. Denote these M memory patterns as pattern vec- 

tors: pa = (pf,p?, . . . ,p,”), a = 1,2,3, . . . , M. For example, p1 might look 

like (+ 1,- 1,+ 1,- 1,- 1, ...,+ 1). One method of storing these patterns is the 

so-called Hebbian learning rule: Start with Tii= 0, accumulate the outer pro- 

ducts of the pattern vectors 

. T t T + [ p a x p a ] ,  for a =  1,2,3, . . . , M ,  ( 4) 

where x denotes the outer product of the two vectors, and set the diagonal ele- 

ments Til = 0. The resulting matrix, after learning all of the patterns, is given 
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where the 6, is necessary2 to set the diagonal terms to zero. It is shown below 

that these stored memory patterns, pa, will be attracting fixed points of Equa- 

tion (2) provided that certain conditions on the number of patterns and their 

statistical properties are satisfied. 

To see why this rule for storing the patterns works, suppose that we are 

given one of the patterns, ps, say, as the initial configuration of the units. First 

I will show that pp is expected to be a fixed point of Equation (2), then I will 

show that pp is expected to be an attracting fixed point. I present the analysis 

in detail here because this same analysis is carried out again for the more com- 

plicated cases of the SDM. 

Insert Equation ( 5 )  for T into (2). The resulting expression for the net 

input to the i fh  unit becomes 

The important term in the sum on a is the one for which a = p. This term 

represents the “signal” between the input p@ and the desired output. The rest 

of the sum represents “noise” that comes from all of the other stored patterns. 

Hence, separate the sum on a into two terms: the single term that has a=p and 

the rest of the sum, a# f3. The expression for the net input becomes I 

hi = signali + noisei, 
where 

(7) 

. 
and 

n 

j =  1 
signali = p?xpJBpJB - ~ p ?  

This is a Kronecker 6: 6ij = 0 for i #  j ;  si, = 1, for i= j .  



Note that this noise term is dependent only on the stored patterns; there is no 

external “temperature” causing the noise in this model. 

Summing on j in (8) yields 

signali = ( n  -M >pip. (10) 
Since n-M is positive for n > M ,  the signs of the signal term and pip will be 

the same. Thus, if the noise term were exactly zero, the signal would give the 

same sign as pip with a magnitude of n-M, and pp would be a fixed point of 

Equation (2). It is easy to see that pp would be an attracting fixed point (if the 

noise were zero) by considering an initial condition that is slightly displaced 

from pp. If the initial condition differed by k bits from pB, the signal would 

still give the same sign as pis,  with strength n - M - 2 k .  Thus, if k e ( n - M ) / 2  

the signal would give the proper sign, and pp would be an attracting fixed point. 

If the stored patterns are chosen to be orthogonal vectors, the noise term 

(7) would be exactly zero. However, if the patterns are chosen at random, 

they are only pseudo-orthogonal, and the noise term may be nonzero. Its 

expected value, however, will be zero, c noise> = 0, where e > indicates sta- 

tistical expectation, and its variance will be 

02= n(M-1). ( 1 1 )  
Hence, the probability that there will be an error on recall of pis is given by the 

probability that the noise is greater than the signal, as shown in Figure 1. For 

n large, the noise distribution is approximately Gaussian, and the probability 

that there is an error in the irh bit is 

. a 

Thus, for p e < <  1 (M not too large), the stored patterns should be attracting 
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fixed points. 

Figure 1. The distribution of noise as described by Equation (9). A bit will be in error 
when the noise is greater than the signal. The probability of error is equd to the area 
shaded under the curve. 

Description of Sparsely Distributed Memory 

In this section, I give a qualitative description of the Sparsely Distributed 

Memory as formulated by Kanerva (1984). The description is based on parallels 

between a conventional computer memory and the SDM. I develop the 

mathematical description that will ease the comparison to the Hopfield model in 

the next section. 

The random-access memory of a conventional computer is an array of 

storage locations. Each storage location is identified by a number (the address 

of the location) that specifies the position of the location in the array. Informa- 

tion is stored in the location as a binary word (the contents of the location). 

Note that the address of the storage location and the contents of that location 

need not have anything in common. Data are written into a location by giving 

both the address of the location and the data to be written. The address points 

to the proper location, and the contents of that location are replaced by the 

given data. Similarly, data are read from a location by specifying the address of 

the location, and the contents of that location are read out as the data. The 
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number of locations that can be accessed in this manner is determined by the 

length of the input address. If the address is a binary word of length n ,  then 

2" locations can be accessed. For example, if n = 16, then 216 = 64K words 

of memory can be accessed; these words could be 32 bit, 64 bit, or any other 

size. 

The set of 2" distinguishable n-bit addresses is called the address space 

(this space is identical to the state space described above). Consider an exten- 

sion of the conventional computer memory to a memory with very large 

addresses. For n moderately large, the number of possible addresses becomes 

astronomical. Indeed, for n = 1000, 2" is larger than the number of atoms in 

the known universe.. Obviously, there is no way of associating all, or even a 

relatively small fraction, of these addresses with physical storage locations. 

How can one construct a memory using these large addresses in a sensible 

manner? Kanerva's answer is as follows: Pick at random rn addresses to be 

associated with physical storage locations (rn might be a million to a billion). 

Becausem is small compared to 2", these randomly chosen addresses represent 

a set of storage locations that is sparsely distributed in the address space. 

To function as a memory, this system should be able to write and read 

data. To write, we need as input both the address and the data itself (just as in 

a conventional computer memory). In the SDM, the address size and the data- 

word size are allowed to be different. However, for the SDM to function as a 

autoassociative memory and to compare it to the Hopfield model, I consider 

only the case where the data-word is the same size as the address; both the 

address and the data are n-bit vectors o f f  1s as considered above. 

Given an address, where are the corresponding data written? The input 

address is quite unlikely to point to any one of the m randomly chosen storage 

locations. However, some of the storage locations are closer to the given 
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address than others. In the SDM, the data are written into a few selected 

storage locations that have addresses close to the input address. The selection 

rule is: select all locations whose addresses are within a Hamming distance D of 

the input a d d r e ~ s . ~  If we view these n-bit addresses as points in an n -  

dimensional address space, the selected locations will lie within a (hyper) sphere 

of Hamming radius D centered at the input address (see Figure 2). The data 

Memory location 
i n  address space I 

ti o n s 3 /  0 6 .  

of Hamming 
radius D 

Address space of  2"possible points 

Figure 2. This qualitative picture of address space shows storage locations in the address 
space, an input address to read from or write into memory, and the Hamming 
(hyper)sphere containing a l l  selected locations. 

are written into every storage location within this sphere. This is why we say 

that the information is disnibured over all the selected storage locations. How- l 
ever, the write procedure is a little more complicated than for a conventional 

computer. Instead of just replacing the old contents of a storage location with 

the new data, the new data vector is added to the previous contents. Thus, 

each of the storage locations in the SDM is actually a set of n counters. The 

reason is that we may wish to write two or more data'vectors into any given 

storage location, because the spheres chosen by two input addresses may 

The Hamming distance of two n-bit binary vectors is simply the number of bits at 
which the two vectors differ. The Euclidean distance is proportional to the square-root 
of the Hamming distance. 



Input Address Data in 

Figure 3. A schematic picture of the functioning of the SDM. The input address comes 
in at the top as the vector a. This address is compared to ai l  of the addresses of the 
storage locations. These addresses are contained in the matrix A with elements Aii. The 
selected loutions have their select bit set to 1 in the vector s. The data are written into 
the selected locations. The contents of the j" counter of the i* location is given by the 
matrix element C,. In a read operation, the contents of the selected locations are added 
together to give the field h. Finally, this field is thresholded to yield the output data d. 
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overlap. 

To read from the SDM, the address of the desired data is given and com- 

pared to the M addresses of the storage locations. Again, select all locations 

whose addresses lie within a Hamming sphere of radius D of the given address. 

The values of these selected locations are added together in parallel to yield n 

sums (see Figure 3). These sums are thresholded at zero giving a + 1 in the ir" 

bit if the irh sum is greater than zero, and a -1 if the irh sum is less than zero. 

Note that this is a statistical reconstruction of the original data word. The out- 

put data should be the same as the original data as long as not too many other 

words have been written into the memory. 

This qualitative description of the SDM may seem quite different than the 

Hopfield model described above, but the read-write rule is just a generalized 

Hebbian learning rule as shown below. 

Layered Network Description 

The Hopfield model can be viewed as a two-layer neural network with each 

layer having n threshold units. The connections between the two layers of units 

is given by the symmetric n x n  matrix T. For the standard autoassociative 

Hopfield model, the output of the second layer is fed back into the first layer, 

effectively making the system a one-layer network. The matrix elements of T 

are given by the Hebbian learning rule. Each unit in the system is updated 

asynchronously, independently of the other units. 

The SDM, on the other hand, can be viewed as a three-layer network 

(Figure 4). The first layer is the n input units (the' input address, a ), the mid- 

dle layer is a layer of rn hidden units (the selected locations, s, and the third 

layer is the n output units (the data, d). The connections between the first 

layer and the second layer are fixed, random weights and are given by the m x n 
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matrix A. The connections between the hidden units and the output layer are 

given by the n x m  connection matrix C. These matrix e!ements are modified 

by a Hebbian learning rule. This connection matrix C is analogous to the con- 

nection matrix T of the Hopfield model. The output layer can be fed back into 

the input layer effectively making the  SDM a two layer network. 

Figure 4. A schematic diagram of the SDM as a three-layer network processing units. 
The input pattern is the bottom layer a, a set of n units whose values are f 1. The mid- 
dle layer is a set of m hidden units that take on the value 0 or I and are denoted by the 
select vector s. In the SDM, m is assumed to be much larger than n .  The weights 
between the 6rst two layers is the matrix A. The thud layer is the output data d. also a 
set of n units of k 1. The connections between the second and the third layer are given 
by the matrix C .  

The SDM typically has m > >  n, so that the first layer of the network 

effectively blows the n bit pattern up into a large m dimensional space. Most of 

the units in the hidden layer are not active. Hence, the hidden unit layer can 

be viewed as a type of sparse coding of the input pattern (Willshaw et al. , 

1969). A hidden unit is turned on if the net input to that unit is above a cer- 
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tain threshold. The input pattern a is a vector of length n. The weights to the 

krh hidden unit from the input units is just the krh row of the A matrix and 

can be thought of as an n dimensional vector ak .  If both the input pattern and 

the weights to each hidden unit are binary vectors, then only the hidden units 

whose weights ak are within D Hamming units of the input a will be activated; 

the activated hidden units will be those for which ak is close to a (the dot pro- 

duct, ak-a  is above the threshold). 

Mathematical Formulation of SDM 

In this section, I will use our earlier mathematical formalism to describe 

and analyze the SDM. Vector notation will be used here because, unlike the 

Hopfield model, the units in the SDM are updated synchronously (all units are 

updated at the same time). Let the addresses of the storage locations be given 

in terms of vectors of length n o f f  1s. Since there are rn storage locations in 

the system, there will be m corresponding addresses of those locations. Let A 

be the matrix whose krh row is the address of the krh storage location (see Fig- 

ure 3). Hence, A will be an m x n  matrix of random f 1s. Let the input 

address be a, a vector of f 1s of length n. The contents of the storage loca- 

tions will be denoted by a counter matrix, C ,  an n x m  matrix of integers. In a 

read or write operation, the input address a is compared to the addresses of the 

rn locations and the locations within the Hamming sphere are selected. Denote 

this selected set by a select vector s, an rn dimensional vector that has 1s at the 

selected locations and Os everywhere else. 

Given an input address a, the selected locations are found by 

s = 8,(A a), (13) 

where OD is the Hamming-distance threshold function giving a 1 in the k th row 

if the input address a is at most D Hamming units away from the kth address 
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in A and a 0 if it is further than D units away, Le., 

The select vector s is mostly Os with an average of 6m Is, where 6 is some 

small number dependent on D ;  6<< 1 (6= 114; in a typical implementation). 

Explicitly, 6 is given by 

where p(x) is the probability distribution of the number of points of distance x 

in the address space from a given point. In this case, p(x) is just a binomial 

n distribution centered at - 
2 '  

Once the input is presented at the first layer and the locations are selected 

in the middle layer, the data is output in the final layer. The net input, h, to 

the final layer is the sum of the selected locations, which can be simply 

expressed as the matrix product of C with s: 

h =  Cs. 
The output data is then given by 

d =  g ( W ,  (17) 
where g is the vector analog of the threshold function of Equation (3), 

+ I  if X i > O  

unchanged if xi=O 

How are patterns stored in the SDM? To store a pattern, we must have 

both the input pattern (address) and the output pattern (data). Suppose we are 

given M input-output pairs to store in the SDM: (a1,d1),(a2,d2), - - ,(aM,#). 

This input-output-pair notation is general and allows association between any 

. 
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two sets of patterns. For example, in an autoassodative memory such as the 

Hopfield model, @ =  a=, whereas a sequential memory is created by setting 

da aa+1 

To store the patterns, form the outer product of the data vectors and their 

corresponding select vectors, 

M 

or=l 
C = Cdaxsa,  

where the select vector is formed by the corresponding address 

sa = O,(Aaa). (20) 
The storage algorithm (19) can be thought of as a generalized Hebbian learning 

rule similar to that of ( 5 ) .  

Now that this mathematical machinery for the SDM has been built, the 

rest of the analysis proceeds analogously to the discussion of the Hopfield 

model. First I will show that data written at a given address can be read back 

from that address. This is analogous to showing that the stored patterns are 

fixed points of the Hopfield model. 

Suppose that the M address-data pairs have been stored according to Equa- 

tion (19). Here I show that if the system is presented with as as input, the out- 

put will be db. Setting a = as in Equation (13) and separating terms as before, 

the net input (16) becomes 

h = signal + noise, 
where 

signal = d@(sP-sb) 
and 

. M 
noise = C da(sa.sP). 

- s  
Recall that the select vectors have an average of 6m 1s and the remainder Os. 
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Hence, the expected value of the signal term is 

c signal> = 6rndS. (24) 
Since 6m is positive, the read data will be dp as conjectured (assuming negligi- 

ble noise). 

Assuming that the addresses and data are randomly chosen, the expected 

value of the noise is zero, with variance 

0 2  = ( M - 1 ) 6 2 m ( l + 6 2 ( r n - l ) ) .  (25)  
The probability of incurring an error in any particular bit of a recalled pattern is 

a 

The noise term has the same characteristics whether the addresses them- 

selves or other patterns are stored as data. Thus, the SDM can serve as a 

heteroassociative memory as well as an autoassociative memory. Since the 

length of the data word is equal to that of the address, the output pattern can 

be fed back in as a new input address. Iterating in this manner on autoassocia- 

tive patterns wil l  cause the system to converge onto the stored pattern in much 

the same manner as for the Hopfield model. Since the connection matrix is not 

symmetric, there is no energy function governing the behavior of the system. 

Nevertheless, the above analysis shows that the stored data can be retrieved 

with high probability as long as not too many patterns have been stored. 

Note that if OD is allowed to be a generalized vector function rather than 

the special function described above, then the Hopfield model results from set- 

ting rn = n and e D ( A  a) = a, Le., Oo(A ) = 1, the identity operator. Thus, 

the Hopfield model may be viewed as a special case of a simple generalization 

of the SDM . However, no choice of D and A in the standard SDM model 

yields 00 (A ) = 1. 

Capacity of the SDM and the Hopfield Model 
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An important question to ask about these models is how many patterns 

can they store. To answer this question, we can restrict our discussion to 

autoassociative memories. The number of patterns that can be stored in the 

memory is known as its capacity. There are many ways of defining capacity. 

One definition is the so-called epsilon capacity, which is simply the number of 

patterns that can be recalled within epsilon error of the stored pattern vectors. 

It has been shown theoretically that the epsilon capacity, c,, for the Hopfield 

model is c, = nl2logn for E> 0 and co = n/4logn (McEliece, et al., 1986) for 

e = 0 in the limit as n+- (where log is to the base e) .  

The epsilon capacity may characterize the Hopfield model well for large n ,  

but for small n ,  other rules have been used. The folklore about the capacity of 

the Hopfield model is that spurious memories start to appear when the number 

of stored patterns is about 0.14n and the performance of the system is severely 

degraded beyond that point. This view has been supported by numerical inves- 

tigations (Hopfield, 1982) and theoretical investigations (Amit et af. , 1985). 

The capacity of the SDM is not as well understood. First of all, there are 

more free parameters in the SDM than in the Hopfield model. In the SDM, the 

capacity is a function of n ,m , and D . Kanerva shows the capacity to be propor- 

tional to rn for fixed n and the best choice of Hamming distance, D. The point 

here is that the capacity for the SDM increases with m independently of n. 

Preliminary numerical investigations of the capacity of the SDM by Cohn, Kan- 

erva, and Keeler (1986) have shown that spurious memories appear at approxi- 

mately 0.13m, and that the spurious memories can be fixed points, cycles, or 

"chaotic" wanderings throughout a portion of the pattern space. Hence, a 

good rule of thumb for the capacity of the SDM is 0.13m (for n =  100- 1000). 

For a given n ,  the SDM can store more patterns than the Hopfield model 

by increasing rn . However, how does the total stored information (total number 
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of bits) compare in the two models? The models can have different n with the 

same number of stored bits, so that the vector capacity does not yield a fair 

comparison of the total information capacity of the networks. Therefore, I 

choose to use a different definition of capacity that gives a more equitable com- 

parison. 

The capacity used here has its roots in information theory (Shannon, 1948) 

and measures the total information stored in the network. This is basically the 

same definition used by Wiilshaw et al. (1969). Define the bit capacity as the 

number of bits that can be stored in a network with fixed probability of getting 

an error in a recalled bit. The bit capacity of each system can be investigated by 

setting pe = constultj in Equations (12) and (26).. Setting pe to a constant is 

tantamount to keeping the signal- to-noise ratio (fidelity) constant. Hence, the 

bit capacity of these networks can be investigated by examining the fidelity of 

the models as a function of n, m , and M . From Equations (10) and (11) the  

fidelity of the Hopfield model is given by 

This formula yields fixed probability of getting an error in a stored bit for con- 

stant R .  For example, given R = 3, the noise is greater than the signal at 3 

standard deviations, and the probability of getting a bit error is'= 0.0055. From 

Equations (24) and (25), the fidelity for Kanerva's model is given by 

where c = 6m is the signal strength (the number of selected locations). For 

c =constunt ( c  = d F / R  ) , the fidelity for the SDM increases monotonically 

with m and is approximately the same as the fidelity for the Hopfield model in 

the limit of large m when m = n .  
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Before looking at the total stored information, we can get an approximate 

expression for the vector capacity by solving for M in these equations. For the 

Hopfield model, the capacity in the limit R >> 1, M >> 1 is given by 

n 2 M = -(1- 7) 9 R 2  R 

whereas the corresponding expression for the SDM (for large m ,  M )  yields 

This last formula shows that the number of patterns of length n that can be 

stored in the SDM is independent of n. For large m , the number of patterns 

stored in the SDM increases linearly with m ,  and the capacity is not limited by 

n as it is for the Hopfield model. 

Note that these expressions for the vector capacity were derived by setting 

the probability of getting an error in a particular bit (p,) constant. The probabil- 

ity of getting M all of the pattern vectors correct is then given by ( l - ~ , ) ” ~ .  

Since n ‘can be different for the two models, it is more relevant to com- 

pare the total number of bits (total information) stored in each model. For the 

Hopfield model the bit capacity scales as 

nn 2 bits = - ( 1  - -), 
R2 R2 

whereas for the SDM, in the limit of large m ,  the number of stored bits goes 

as 

mn 
R 

bits = y ( l - c 2 1 m ) .  

Since t h e m m b e r  of elements in T is n 2  and the number of elements in C is 

nm, the bit capacity for each model divided by the number of matrix elements 

is the same (in the limit of large n and m ) ?  This shows that the asymptotic 

I have only divided the bit capacity for the SDM by the number of elements in C 
because these are the only elements that are variable and c contains the Hebbian 
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amount of information stored per matrix element in the SDM and the Hopfield 

model is the same, - 1 
R2' 

Sequences 

In an autoassociative memory, the system relaxes to one of the stored pat- 

terns and stays fixed in time (until a new input is presented). However, there 

are many situations where it is desirable to have the recalled patterns change 

sequentially in time. For example, a song can be remembered as a string of 

notes played in the correct sequence; cyclic patterns of muscle contractions are 

essential for walking, riding a bicycle, or dribbling a basketball. 

Suppose that we wished to store a sequence of patterns in the SDM. Let 

the pattern vectors be given by ( p  1 2  ,p . . . pM). This sequence of patterns 

could be stored by having each pattern point to the next pattern in the 

sequence. Thus, for the SDM, the patterns would be stored as input-output 

pairs (aa,@), where aa = pa and da = pa+' for a = 1,2,3, ..., M-1.  Conver- 

gence to this sequence works as follows: If the SDM is presented with an 

address that is close to p' the read data will be close to p2. Iterating the system 

with p2 as the new input address, the read data will be even closer to p3. As 

this iterative process continues, the read data will converge to the stored 

sequence, with the next pattern in the sequence being presented at each time 

step. 

The convergence statistics are essentially the same for sequential patterns 

as shown above for autoassociative patterns. Presented with pa as an input 

address, the signal for the stored sequence is found as before 

< signal> = 6rn pa+ (33) 

learning coefficients. One could argue that the correct comparison should be the total 
number of elements in A and C, which would yield a factor of ?h for the SDM. 
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Thus, given pu, the read data is expected to be pa++'. Assuming that the pat- 

I terns in the sequence are randomly chosen, the mean value of the noise is 

zero, with variance 

e a*> = (M-1)62m(1+62(m-l)). (34) 
Hence, the length of a sequence that can be stored in the SDM increases 

linearly with rn for large m . 
Attempting to store sequences like this in the Hopfield model is not very 

successful. If the length of the sequence is greater than 2, the values of the 

units at a given time typically become evenly distributed among all of the pat- 

terns. The reason for this failure is that the units are being updated asynchro- 

I 

I nously. Suppose that a sequence of patterns ( p  1 2  ,p , . . . , pM)  is stored in the 
M- 1 

Hopfield network using T = 2 pa+lxpa. The state of each unit is updated 
a=l 

according to the states of all the other units, so that if the network is presented 

with pl, the first few units will be updated and change their value to p2. After 

about n / 2  units have changed their value, the local field for the other units 

now points half to p2 and half to p3. Thus, some of the units get updated to 

the states for p3 before the others achieve the correct values for p2. The net 

result after = Mn updates is that the units are typically distributed over all of 

the patterns in the sequence. 

I This failure to recall sequences is only an artifact of asynchronous updat- 

ing. If the Hopfield model is modified to update the units synchronously, the 

Hopfield model will recall sequences just as described for the SDM. The 

number of patterns that can be stored in the sequence is determined by the 

signal-to-noise ratio and is equivalent to the capacity. Again, the length of the 

longest sequence stored in the Hopfield model is limited to a fraction of pattern 

size n ,  whereas in the SDM it is limited by the number of locations m ,  which 

can be varied independently of n . 

I . 
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Another method for storing sequences in Hopfield-like networks has been 

proposed independently by Kleinfeld (1986) and Sompolinsky and Kanter 

(1986) (see also Grossberg, 1971). These models relieve the problem created 

by asynchronous updating by using. a time-delayed sequential term The equa- 

tions for updating are as follows: 

where T = paxpa, with T, = 0, D = pa+’xpa, k is a delay of a few time 

steps, and the mean rate of asynchronous updating is n updates per unit time 

step. When presented a pattern close to pl, this system relaxes exactly to p1 

within k time steps. Then in the next k time steps the units update to p2. 

Continuing in this fashion, the system will recover the stored sequence with a 

new pattern being presented every k time steps. 

This time-delay storage algorithm has different dynamics than the synchro- 

nous SDM model. In the time-delay algorithm, the system allows time for the 

units to relax to the fist pattern before proceeding on to the next pattern, 

whereas in the synchronous algorithms, the sequence is recalled imprecisely 

from imprecise input for the first few iterations and then correctly after that. In 

other words, convergence to the sequence takes place “on the fly” in the syn- 

chronous models - the system does not wait to zero h on the first pattern 

before proceeding on to recover the following patterns. This allows the synchro- 

nous algorithms to proceed k times as fast as the asynchronous time-delay algo- 

rithms with half as many (variable) matrix elements. 

Time Delays and Hysteresis 

In Kanerva’s original work, he included the concept of time delays as a 

general way of storing sequences with hysteresis. The problem addressed by 

this is the following: Suppose we wish to store two sequences of patterns that 
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overlap. For example, the two pattern sequences (a,b,c,d,e,f, ...) and 

(x,y,z,d,w,v, ...) overlap at the pattern d If the system only has knowledge of 

the present state, then when given the input d, it cannot decide whether to out- 

put w or e (see Figure 5) .  To store two such sequences, the system must have 

Figure 5. Two sequences are stored in the system. The first sequence (a,b,c,d,e,f, ...) 
overlaps the second sequence (x.j,z,d,w,v, ...) at d. The system must have some 
knowledge of the past states if it is to recover the sequences properly. This phenomenon 
can be thought of as momentum or hysteresis in a dynamical system. 

some knowledge of the immediate past. Kanerva incorporates this idea into the 

SDM by using "folds." A system with F+1 folds has a time history of F past 

states. These F states may be over the past F time steps or they may go even 

fuither back in time, skipping some time steps. The algorithm for reading from 

the SDM with folds becomes 

where s( t -Ty)  = 0, (A d(t-Ter)). To store the Q pattern sequences 

1 2  construct the (p1,p1, . . . ,PI '1, ( ~ 2 ~ ~ 2 ,  . . . , ~ 2  3,- (PQ,PQ~ - ~PQ'), 
matrix of the yrh fold as follows: 

M 1 2  M 1 2  M 

where any vector with a superscript less than 1 is taken to be zero, 
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 SF-'^ = OD(Apt-"), and wy is a weighting factor that would normally 

decrease -4th increasing y. 

Why do these folds work? Suppose that the system is presented with the 

pattern sequence (p1,p1, . . . , p1 l ) ,  with each pattern presented sequentially as 

input until the ZF time step. For simplicity, assume that w y  = 1 for all y .  Each 

term in Equation (36) will contribute a signal similar to the signal for the 

single-fold system. Thus, on this time step, the signal term coming from Equa- 

tion (36) is 

1 2  M 

The signal term will have this value until the end of the pattern sequence is 

reached. The mean of the noise terms is zero, with variance 

Hence, the signal-to-noise ratio is d F  times as strong as it is for the SDM 

without folds. 

Suppose further that the second stored pattern sequence happens to match 

the first stored sequence at t = q. The signal term would then be 

With no history of the past, F = 1, the signal is split between pp" and p?", 

and the output is ambiguous. However, for F >  1, the signal for the first pat- 

tern sequence dominates and allows retrieval of the remainder of the correct 

sequence. 

Kanerva's formulation allows context to aid in the retrieval of stored 

sequen'ces. Obviously, the Hopfield model could be extended to perform the 

same sort of function, but it would still be limited in the length of the 

sequences stored to some fraction of the word size times dF. 
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There are a large number of applications where context is an important 

consideration. For example, context is essential in speech recognition: If I say 

“bat,” you don’t know if I am talking about something used to hit a ball or a 

small winged mammal that flies at night, but if I say “the boy swung the bat,” 

the ambiguity is relieved. 

Time delays are prevalent in biological systems and seem to play an impor- 

tant role there also. For example, the signal time between two units depends 

on the length of the axon connecting the two units and the diameter of the 

axon. The above formulation might be useful in understanding the importance 

of these time delays. 

Continuous Equations and Optimization Problems 

The Hopfield model has also been formulated in terms of continuous 

dynamical equations (Hopfield, 1984). Continuous equations can also be writ- 

ten down for the SDM, 

where z is the characteristic self-relaxation time for the units, C is the same as 

in Equation (19), the state of the ith input-output unit is g ( v i ) ,  and 81, and g 

are continuous analogs of the discrete functions described earlier. This con- 

tinuous system has similar behavior to the discrete version of the autoassocia- 

tive SDM, except that storing sequences in this system fails for the same rea- 

sons as described for asynchronously updated systems. To recover the proper- 

ties of synchronous updating, a delay term could be included (Kleinfeld, 1986; 

Sompolinskp & Kanter, 1986) or some sort of explicit clocking term could be 

used. 

Hopfield and Tank (1985) have used the continuous version of the 
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Hopfield (1984) model to gain approximate solutions to optimization problems. 

This is done by constructing a T matrix that yields an energy surface with 

minima at near-optimum solutions to the problem (see also Amari, 1971, 1974 

and Cohen & Grossberg, 1983). So far, there has been no corresponding con- 

struction of an energy function for the SDM. Indeed, one would expect that 

such an energy function does not exist because of the asymmetric nature of C 

in the SDM and the fact that fixed points are not always reached under itera- 

tion of the autoassociative SDM.5 Hence, performing optimization problems 

such as the traveling salesman problem with the SDM is not as straight-forward 

as it is with the Hopfield model. Nevertheless, there is a measure of the good- 

ness of a read operation for the SDM. The standard deviation of the com- 

ponents of the field, h, achieves local maxima at the stored patterns in both 

autoassociative and heteroassociative memory. The standard deviation is not 

an exact analogy to the energy function of the Hopfield model, but this func- 

tion might be useful for future work in optimization problems with the SDM. 

Higher Order Interactions 

Another generalization of the Hopfield model is to allow higher order non- 

linear interactions between the units in the dynamical system. In the standard 

Hopfield model and the single-fold SDM model, the interactions are between 

pairs of units. This pairwise interaction leads to the linear-threshold rules given 

in Equations (2) and (14). However, if higher order interactions between the 

units are allowed, the threshold sum rule becomes a nonlinear tensor product. 

Lee et af. (1985) and Baldi and Venkatesh (1986) have shown that using 

higher order interactions can improve the capacity of the Hopfield model as 

well as some of its dynamical properties. I briefly describe the discrete 

5 This could just be an artifact of the synchronous update; fixed points might always 
be reached using asynchronous update. 
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l 
formulation of these higher order systems below and investigate the informa- 

tion stored in these systems. 

Consider n threshold units with interactions between c + l  other units. 

The updating algorithm for the system then becomes 

where g is the same two-state threshold function as before, and ui is the state 

of the ifh unit. To store the patterns p 1 2  ,p , - - ,pM in an autoassociative net- 

work, construct the c + l  order tensor T as 

The signal-to-noise ratio for this system is found in a straightforward manner 

similar to the calculation for the Hopfield model. The fidelity for this system is 

given by 

c12 

4M-l' R =  

I 
l and the number of bits stored in the system for large n is just 

.c+ 1 

R 2  
bits = -. (45) 

I A similar generalization can be made for the SDM. The above system has 

generalized the Hebbian learning rule to include interactions between many 
I 

I units. If we generalize in the same manner for the SDM, the dynamical equa- 

tions become 

n 

j =  1 
where the updating is done synchronously and si = e,( C A i j a j ) .  Again, to 
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store the M patterns in an autoassociative network, construct the c + l  order 

tensor C 

n 

j =  1 
where sia = 80 ( C Aiipja).  The signal-to-noise ratio for this rule is 

c12 
R =  

.I ( M - l ) (  1+ * 
m 

From this expression the bit capacity for the SDM is found to be 

m c n  bits = - 
R2 (49) 

in the limit of large rn. The number of matrix elements in the model of Lee 

et al. is just nC+l, whereas the number of elements for the SDM is nmc. 

Hence, the number of bits per matrix element is the same for these two sys- 

tems as well. Indeed, the number of bits per matrix element turns out to be 

identical to that for the linear systems discussed above (7). 1 The indication is 
R 

that this might be a general result for all Hebbian-type learning rules, and that 

the total information stored in systems of this type is a constant times the 

number of matrix elements, independent of the particular model. 

Correlated Input Patterns 

In the above associative memories, all of the patterns were taken to be 

randomly chosen, uniformly distributed binary vectors of length n . However, 

there are many applications where the set of input patterns is not uniformly dis- 

tributed; the input patterns are correlated. For example, different human faces 

have many correlated features, but we are able to recognize a very large 

number of faces. In mathematical terms, the set K of input patterns would not 



be uniformly distributed over the entire space of 2" possible patterns (see Fig- 

ure 6). Let the probability distribution function for the Hamming distance 

Figure 6. A schematic diagram of how the distribution of input patterns could be non- 
uniform in the space of all 2" such patterns. The set K could be distributed only over a 
very small region of the entire space. To r e d 1  the correlated patterns in this distribu- 
tion. construct the rows of the matrix A with the same distribution and adjust the 
Hamming-distance threshold D so that the proper number of locations are selected. 

between two randomly chosen vectors pa and pp from the distribution K be 

given by the function p(d(pa-pB)). For the moment, assume that this distri- 

bution function is approximately Gaussian with mean y n ,  where 

l / n  c y S n/2. Recall that for a uniform distribution of patterns, p(x) is just 

a binomial distribution with mean n/2. 

The SDM can be generalized from Kanerva's original formulation so that 

For the correlated input patterns can be associated with output patterns. 

moment, assume that the distribution set IC and the probability density function 

p(x) are known a priori. Instead of constructing the rows of the matrix A from 

the entire space of 2" patterns, construct the rows of A from the distribution K. 

Adjust the Hamming distance D so that = 6m locations are selected. In 

other words, adjust D so that the value of 6 is the same as given above, where 

6 is determined by 
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Using the same distribution for the rows 

patterns in K, and using (50) to specify the 

of A as the distribution of the 

choice of D ,  all of the above 

analysis is applicable.6 The SDM wil l  be able to recover data stored with corre- 

lated inputs with a fidelity given by Equation (28). 

In general, the distribution K could be much more complicated than 

described above. The set of patterns could be clustered in many correlated 

groups distributed over a large portion of the entire pattern space. In that case, 

the probability density function p(p"- pp) would depend on the patterns p. 

These patterns could also be stored using the same distribution for the rows of 

A as the distribution of K. In this case, the Hamming distance D would have 

to be determined dynamically to keep 6 constant. This can be achieved by a 

feedback loop that compares the present value of 6 to the desired value and 

adjusts D accordingly. Circuitry for this is straightforward to construct (Keeler 

& Denning 1986), and a mechanism of this sort is found in the cerebellum 

(Marr, 1969; see the Appendix). 

There are certain biological memory functions that seem to be pre- 

programmed and have an a priori knowledge of what to expect as input from 

the outside world. This knowledge is equivalent to knowing something about 

the distribution function K. However, what if the distribution function K is not 

' known a priori? In that case, we would need an algorithm for developing an A 

matrix that mimics the distribution of K, and the elements of A would be 
~ 

Assuming randomly chosen output patterns. If the outputs are also correlated, the 
mean of the noise is not 0. However, if the distribution of outputs is also known. the 
system can still be made to work by adjusting the final threshold. 
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modifiable. There are many ways to build A to mimic K. One such way is to 

start with a random A matrix and modify the entries of 6 randomly chosen 

rows of A at each step according to the statistics of the most recent input pat- 

terns. Another method is to use competitive learning (Grossberg, 1976 & 

Kohonen, 1984) to achieve the proper distribution of A (see Keeler, 1987 for 

de tails). 

Conclusion 

The SDM model is attractive for its versatility and expandability. The 

number of patterns that can be stored in the SDM is independent of the size of 

the patterns, and the SDM can be used as an autoassociative or heteroassocia- 

tive memory. The SDM can also be used to store sequences and can even 

retrieve correct sequences from contextual information by using folds. By 

adjusting the distribution of the A matrix, the SDM can also be used to associ- 

ate patterns with correlated inputs. 

The Hopfield model is attractive both for its simplicity and for its computa- 

tional ability at approximating solutions to optimization problems. Moreover, 

the above investigation shows that the Hopfield model can also be used as a 

heteroassociative memory and can store sequences if synchronous updating is 

used. 

Since the bit capacity per matrix element of the two networks is the same, 

what are the advantages of using one model instead of the other? The advan- 

tages would depend on the particular application. The SDM allows a greater 

number of patterns of a given size to be stored, but one has to pay a price for 

this in terms o f j h e  A matrix calculation. There are some applications where 

this extra calculation would be worth the effort. For example, storing many 

correlated patterns or sequences of patterns would be much easier to do in the 

SDM than in the Hopfield model. On the other hand, there are some 
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applications where the Hopfield model would be the best choice. For instance, 

if speed is the main constraint instead of capacity, it would be better to use the 

Hopfield model. 

One of the main objections of using the Hopfield model as a model of bio- 

logical neural networks is that the connections in the Hopfield model are sym- 

metric. The above analysis demonstrates a way to analyze networks without the 

requirement of symmetric matrices. The SDM has no  symmetry requirement 

and may therefore present a more realistic model of biological systems. 

Indeed, the SDM model is equivalent to Marr’s (1969) model of the cerebel- 

lum (see Appendix). Marr’s model was built up from the cellular level and 

includes a function for every neuron type found in the cerebellum. In that 

sense, the SDM is a very plausible model of biological memory. 

Perhaps the most important feature of the above analysis is the similarity 

of the two models. These two memory models were developed from totally 

different points of view, yet they share many common features, and it was 

shown how these model can perform many of the same tasks. It was also 

shown that the bit capacity per matrix element is the same for the Hopfield 

model, the SDM, and the models with higher order interactions. These results 

indicate that there might be some universal behavior governing systems with 

Hebbian learning rules. There is still much work to be done to make the con- 

nection between these models and any biological system, but the similarities 

between these systems indicate that the SDM and the Hopfield model may 

have captured some of the essential underlying properties of neural networks. 

Future investigations and extensions of these models should prove fruitful for 

understanding biological systems and designing machines to mimic various bio- 

logical tasks. 
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Appendix: Relation of the SDM to the Cerebellum 

The cerebellum is a part of the brain that is important in the coordination 

of complex muscle m~vernen t s .~  The neural organization of the cerebellum is 

highly regular: billions of Purkinje cells are stacked in parallel planes with about 

a hundred thousand mons from granule cells piercing these planes. The input 

to the cerebellum is through the mossy fibers which synapse on the granule 

cells (see Figure Al) .  The cerebellum also receives input from the inferior 

olive by means of the climbing fibers, which are in a one-to-one correspon- 

dence with the Purkinje cells and wrap themselves around the Purkinje cells. 

The sole output of the cerebellum is through the axons of the Purkinje cells. 

David Man  (1969) modeled the cerebellum (see also Gilbert, 1974) in a 

fashion that is mathematically equivalent to the SDM The correspondence 

between the neurons in the cerebellum and the SDM model is as follows: The 

mossy fibers are the input to the SDM. The granule-cell mons are the select 

lines (this makes sense since the granule cells are the most populous neurons 

in the brain). It turns out that only a small fraction of the granule cells are 

firing at any one time. This fraction is the 6 described above. If the granule 

cells receive the proper input from the mossy fibers, the granule cells fire, and 

they synapse on the Purkinje cells. The Purkinje cells lire if they receive 

enough input from the granule cells. Hence the Purkinje cells form the output 

layer, and the connections Cij are the synapses between the Purkinje cells and 

the granule cells. 
9 

The hypothesis of Hebbian learning works as follows: The climbing fibers 

relay information that is to be stored in the Purkinje cells, and this information 

is writnn at  the synapses that have active granule-cell input. This is the part of 

Most of the similarities in this section were pointed out by Kanerva (1984). I ex- 
pand on his and Marr's (1969) description here (see also Gilbert, 1974). 
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the theory that is the most controversial and is the hardest to check experimen- 

tally. 

There are three other types of neurons in the cerebellum that I have not 

mentioned so far. The first two are called basket cells and stellate cells, both of 

which synapse on the Purkinje cells. The function of the stellate cells is to 

adjust the threshold of the Purkinje cells, which would correspond to adjusting 

the threshold of the function g. The basket cells might not only adjust the 

threshold of the Purkinje cells, but they could also adjust the gain of the cells 

as well. The other type of cell is called a Golgi cell. The population of these 

cells is about 10% of the population of Purkinje cells. The Golgi cells receive 

input from the parallel fibers, and their axons synapse OD the granule-cell- 

mossy-fiber clusters. The presumed function of the Golgi cell is to act as a 

feedback mechanism to keep the number of k i n g  granule cells constant. This 

is analogous to a feedback mechanism for regulating 6 described above. 

Marr and Kanerva assumed that the synapses between the mossy fibers 

and the granule cells are fixed and that the inputs from the mossy fibers are 

random. It is apparent from the above discussion that there is n o  need for this 

assumption. These synapses might be fixed with genetically coded a priori 

knowledge of the expected inputs, or they could adjust in time to conform to 

the distribution of the mossy fiber input. This would allow differentiation 

between correlated inputs from the mossy fibers. 

It is interesting that everything in the theory of the SDM fits in place in 

the model of the cerebellum even though the cerebellar cortex was not the ori- 

ginal motivation for the SDM. The function of all of the cells in the cerebel- 

lum is not f i l ly  understood, and the mechanism for learning might be different 

than described above. However, the model seems to be faithful to everything 

that is known so far about the working of the cerebellum. 



Figure Al. A sketch of the neurons of the cerebellar cortex. Pu= Purkinje cell (black), 
Go= Golgi cell (dotted), Gr= granule cell, Pa= parallel fiber, St= stellate cell, Ba= basket 
cell, CI= climbing fiber, Mo= Mossy Fiber (black). Only a few of the cells are shown. 
Usually, there are about 100,000 parallel fibers in the parallel fiber bundle, but only 
about 500 of these are active at any one time. From 'The Cortex of the Cerebellum" by 
Rodolfo R. Llinas. Copyright 1975 by Scientific American, Inc. All rights reserved. 
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